
Securing AWS EKS Kubernetes Ingress gateway resource with Trusted TLS
certificate using Cert-manager-Atlas Issuer

Pre-requisites:
1. AWS Account

2. Nginx Ingress

3. One Valid Domain Name

4. Kops and Kubectl

5. Helm Package Manager

6. Cert-manager & its CRD's

7. Cert-manager-Atlas Plugin

What is Ingress?

Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic routing is controlled by rules defined

on the Ingress resource.

Here is a simple example where an Ingress sends all its traffic to one Service:

All the below mentioned steps has been executed over Linux (amd64)

Here are the following steps for your to secure your Ingress with GlobalSign's Trusted TLS
certificate using Cert-manager-Atlas Plugin

1. AWS Ubuntu EC2 Instance - Use the AWS documentation for creating Ubuntu Instance

2. Create A User in IAM

a. Go to IAM Console and select Users

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.25/#ingress-v1-networking-k8s-io
https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/gs-ubuntu.html

b. Click on create user

c. Give a name to the user

d. Fill the checkbox of "Provide user Access to the AWS Management Console"

i. Select "I want to create an IAM user "

ii. In Console Password, choose "Autogenerate Password" or "Custom Password" based on your choice.

iii. Click "Next" in the bottom right corner.

e. In Set Permissions, choose

i. Select "Add User to a group" in case if you already have defined policies for a particular user group, otherwise choose "Attach

Policies directly".

ii. In Permission Policies, provide the following permissions to the user(Note:- You can provide permissions based on your own

requirements as this is just for the example purposes.)

1. AdministratorAccess

2. AmazonEC2FullAccess

3. AmazonEKSClusterPolicy

4. AmazonEKSServicePolicy

5. AmazonEventBridgeFullAccess

6. AmazonRoute53FullAccess

7. AmazonVPCFullAccess

8. AWSCloudFormationFullAccess

9. IAMFullAccess

10. Click "Next" in the bottom-right corner

iii. Review your User Permissions and Policies

iv. Select "Create User" in the bottom-right corner and your user will be created.

v. Retrieve Login URL and Password

3. Provide programmatic Access to your user

a. Go to IAM and then users again

b. Select your created user

c. Select "Security Credentials"

d. Go to "Access Keys" in your Security Credentials and Choose "Create Access Key"

e. Go to the Use Case and select "AWS CLI"

f. Click Next and then "Create Access Key"

g. You will get your Programmatic Access Keys here

4. Connect to your AWS ec2 instance which you have created in the Step-1 (Ref.)

5. Once you are logged in to your instance, then Install the following tools

a. Install Unzip

b. Configure AWS CLI

6. Now, Configure AWS CLI with the following commands and the programmatic access keys created in Step -3(g)

1 $sudo apt install

1

2

3

$curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"

$unzip awscliv2.zip

$sudo ./aws/install

1

2

3

4

$aws configure

#enter the Access key ID and Secret access key.

#Provide the region details i.e., us-east-1 or any other

#Give output format as "json".

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-connect-methods.html

7. Install Helm

8. Install kubectl and eksctl(tools to manage and interact with the kubernetes cluster)

a. Installing latest version of kubectl

b. Installing the latest version of eksctl:

9. Creating the cluster with 3 worker node and 1 master node with the below command:

5

6

#Generate public and private keys

$ssh-keygen

1

2

3

$curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3

$chmod 700 get_helm.sh

$./get_helm.sh

1

2

3

4

5

$curl -LO"https://dl.k8s.io/release/$(curl -L -shttps://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubect

#make the downloaded file executable

$chmod +x kubectl

#Move the executable to the /usr/local/bin

$sudo mv kubectl /usr/local/bin

1

2

3

4

5

6

7

8

#for ARM systems, set ARCH to: arm64, armv6 or armv7

$ARCH=amd64

$PLATFORM=$(uname -s)_$ARCH

$curl -sLO "https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_$PLATFORM.tar.gz"

#(Optional) Verify checksum

$curl -sL "https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_checksums.txt" | grep $PLATFO

$tar -xzf eksctl_$PLATFORM.tar.gz -C /tmp && rm eksctl_$PLATFORM.tar.gz

$sudo mv /tmp/eksctl /usr/local/bin

1 $eksctl create cluster --name test-cluster --version 1.29 --region eu-west-1 --nodegroup-name linux-nodes --no

It will take around 10 to 15 mins for cluster to be ready to use. After the said time you can check the status of the cluster by running the

below command:

When the cluster is ready with 3 node machines running in eu-west-1 region and 1 master running in eu-west-1 as per the availability

zones.

10. Install cert-manager and its CRD's

a. Add and update the Jetstack Helm repository

b. Install the CRD's(Custom Resource Definition) of Certmanager using the following command

c. Install the Latest cert-manager using helm

d. Now, Install the GlobalSign's Certmanager-Atlas CRD. Once it is installed, then it is ready to handle Atlas Certificate requests.

11. Label the cert-manager namespace to disable resource validation

12. Now, Install Nginx-ingress-controller in namespace cert-manager

13. Create A record in your Route 53 to the Hosted Zone for the below created Load Balancer IP(Here the cluster IP is

10.100.96.178)

1 $eksctl get cluster

1 $helm repo add jetstack https://charts.jetstack.io --force-update

1 $kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.13.3/cert-manager.crds.y

1 $helm install cert-manager jetstack/cert-manager --namespace cert-manager --create-namespace --version v1.13

1 $kubectl apply -f https://github.com/globalsign/atlas-cert-manager/releases/download/v0.0.1/install.yaml

1 $kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

1

2

$helm upgrade --install ingress-nginx ingress-nginx --repo https://kubernetes.github.io/ingress-nginx --namesp

$kubectl get svc -n cert-manager

14. As soon as the ingress-nginx-controller get the EXTERNAL-IP value with extension *.eu-west-1.elb.amazonaws.com, Add this

value as A record into hosted zone. It would be in the sync within 60sec.

Note:- Before creating the hosted zone kindly make sure you have the valid domain.

15. Creating A record over AWS Route53

a. Go to https://us-east-1.console.aws.amazon.com/route53/v2/home?region=eu-west-1#Dashboard and click on "Hosted zones".

b. Click on "Create hosted zone"

c. Enter the name followed by your actual domain name and make sure the "Public hosted zone" should be selected:

d. After creating the hosted zone, you would get sone NS record along with SOA record. Now add the NS records into your domain

registrar

e. After adding the NS into domain registrar your hosted zone is now ready to accept traffic, Now you can create the A record into the

hosted zone:

i. Into your hosted zone, Click on "Create record"

https://us-east-1.console.aws.amazon.com/route53/v2/home?region=eu-west-1#Dashboard

ii. On the next screen make sure that Record Type is "A" and "Alias" are selected. Also make sure that "Route traffic to" "Alias to

Application and Classic Load Balancer is selected". After selecting the required fields click on "Create records":

iii. The record would be created and it would take around 60sec to get in the sync.

16. Create GlobalSign Issuer to issue a TLS certificate for your Ingress using the following steps:-

a. Create a secret to store the GlobalSign's ATLAS account api_key, secrets along with mTLS and private key(You can get these API

credentials from GlobalSign's Team)

b. Create an Issuer of GlobalSign.

c. Create Certificate Resource with the following Configuration

1 $kubectl create secret generic issuer-credentials --from-literal=apikey=$API_KEY --from-literal=apisecret=$A

1

2

3

4

5

6

7

8

9

10

cat <<EOF | kubectl apply -f -

apiVersion: hvca.globalsign.com/v1alpha1

kind: Issuer

metadata:

 name: gs-issuer

 namespace: cert-manager

spec:

 authSecretName: "issuer-credentials"

 url: "https://emea.api.hvca.globalsign.com:8443/v2"

EOF

1

2

3

cat <<EOF | kubectl apply -f -

apiVersion: cert-manager.io/v1

kind: Certificate

d. At times the certificate object can take couple of seconds to become READY.

17. Securing nginx ingress resource by the below configuration:

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

metadata:

 name: pki.atlasqa.co.uk

 namespace: cert-manager

spec:

 # Secret names are always required.

 secretName: www.atlasqa.co.uk

 duration: 2160h # 90d

 renewBefore: 360h # 15d

 subject:

 # organizations:

 # - jetstack

 # The use of the common name field has been deprecated since 2000 and is

 # discouraged from being used.

 commonName: pki.atlasqa.co.uk

 isCA: false

 privateKey:

 algorithm: RSA

 encoding: PKCS1

 size: 2048

 usages:

 - server auth

 #- client auth

 # At least one of a DNS Name, URI, or IP address is required.

dnsNames:

-

#www.atlasqa.co.uk

 # Issuer references are always required.

 issuerRef:

 name: gs-issuer

 # We can reference ClusterIssuers by changing the kind here.

 # The default value is Issuer (i.e. a locally namespaced Issuer)

 kind: Issuer

 # This is optional since cert-manager will default to this value however

 # if you are using an external issuer, change this to that issuer group.

 group: hvca.globalsign.com

EOF

1

2

3

4

5

6

7

cat <<EOF | kubectl apply -f -

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: nginx

 namespace: cert-manager

 annotations:

18. The ingress resource that has been created could take up to 1min to get the load balancer URL as ADDRESS.

19. Attaching the screen shot:

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 cert-manager.io/issuer: GS-issuer

 kubernetes.io/ingress.class: nginx

spec:

 tls:

 - hosts:

 - pki.atlasqa.co.uk

 secretName: www.atlasqa.co.uk

 rules:

 - host: pki.atlasqa.co.uk

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: example-service

 port:

 number: 80

EOF

